期刊论文详细信息
Bioactive Materials
Ionic liquid-loaded microcapsules doped into dental resin infiltrants
Fabrício Mezzomo Collares1  Sílvia Stanisçuazki Guterres2  Kelly Cristine Zatta3  Marla Cuppini4  Isadora Martini Garcia4  Vicente Castelo Branco Leitune4  Virgínia Serra de Souza5  Jackson Damiani Scholten5  Fernanda Visioli6 
[1] Corresponding author.;Cosmetology Laboratory, School of Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil;Cosmetology and Pharmaceutical Nanotechnology Laboratory, School of Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil;Department of Dental Materials, School of Dentistry, Federal University of Rio Grande do Sul, Ramiro Barcelos Street, 2492, Rio Branco, 90035-003, Porto Alegre, RS, Brazil;Laboratory of Molecular Catalysis, Institute of Chemistry, Federal University of Rio Grande do Sul, Bento Gonçalves Avenue, 9500, Agronomia, 91501-970, Porto Alegre, RS, Brazil;Oral Pathology Department, School of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, 90035-003, Porto Alegre, RS, Brazil;
关键词: Surface properties;    Dental caries;    Stress;    Mechanical;    Drug delivery systems;    Polymers;   
DOI  :  
来源: DOAJ
【 摘 要 】

Resin infiltrants have been effectively applied in dentistry to manage non-cavitated carious lesions in proximal dental surfaces. However, the common formulations are composed of inert methacrylate monomers. In this study, we developed a novel resin infiltrant with microcapsules loaded with an ionic liquid (MC-IL), and analyzed the physical properties and cytotoxicity of the dental resin. First, the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2) was synthesized. BMI.NTf2 has previously shown antibacterial activity in a dental resin. Then, MC-IL were synthesized by the deposition of a preformed polymer. The MC-IL were analyzed for particle size and de-agglomeration effect via laser diffraction analysis and shape via scanning electron microscopy (SEM). The infiltrants were formulated, and the MC-IL were incorporated at 2.5%, 5%, and 10 wt%. A group without MC-IL was used as a control. The infiltrants were evaluated for ultimate tensile strength (UTS), contact angle, surface free energy (SFE), and cytotoxicity. The MC-IL showed a mean particle size of 1.64 (±0.08) μm, shriveled aspect, and a de-agglomeration profile suggestive of nanoparticles' presence in the synthesized powder. There were no differences in UTS among groups (p > 0.05). The incorporation of 10 wt% of MC-IL increased the contact angle (p < 0.05), while the addition from 5 wt% reduced the SFE in comparison to the control group (p < 0.05). The human cell viability was above 90% for all groups (p > 0.05). The incorporation of microcapsules as a drug-delivery system for ionic liquids may be a promising strategy to improve dental restorative materials.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次