期刊论文详细信息
BioResources
Supercritical Water-induced Lignin Decomposition Reactions: A Structural and Quantitative Study
Lucian A. Lucia1  Yu Liu1  Gaojin Lyu1  Shubin Wu2  Guihua Yang3  Weikun Jiang3 
[1] China;Qilu University of Technology;South China University of Technology;
关键词: Supercritical water;    Lignin;    Phenolics;    Quantitative analysis;   
DOI  :  10.15376/biores.11.3.5660-5675
来源: DOAJ
【 摘 要 】

The use of supercritical water for the decomposition of lignin and evaluation of its influence on lignin decomposition and conversion to various products was the thrust of the current study. Poplar alkali lignin (AL), corncob-to-xylitol residue lignin (XRL), and cornstalk-to-ethanol residue lignin (ERL) were the lignin species studied because they constitute the main residual lignins available in the biomass refinery industry. The lignins were characterized by elementary analysis, Fourier transform infrared spectrometry (FT-IR), phosphorus nuclear magnetic resonance (31P-NMR), and X-ray diffraction (XRD), and their hydrothermal depolymerization products were analyzed by gas chromatography-mass spectrometer (GC–MS). The results showed that the residual lignin is a potential source for valuable aromatics. The XRL had the best total phenolics yield, 140 mg/g, while AL had the lowest, 90 mg/g. The maximum yields of phenol (28.94 mg/g) and 4-ethylphenol (36.21 mg/g) were obtained from XRL depolymerization at 375 °C for 30 min, and the optimal yields of guaiacol (14.34 mg/g) and 2,6-dimethoxyphenol (15.67 mg/g) were achieved by AL at 375 °C for 30 min. The information here provides some insights toward developing selective biorefinery methods for lignin-to-organic products conversion processes.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次