Molecules | |
Study of Titanium–Silver Monolayer and Multilayer Films for Protective Applications in Biomedical Devices | |
Franklin Bermeo-Acosta1  Luz Dary Caicedo-Bejarano1  Sandra Patricia Castro-Narváez1  Sebastián Mina-Aponzá1  | |
[1] Faculty of Basic Sciences, Campus Pampalinda, Universidad Santiago de Cali, Cali 760035, Colombia; | |
关键词: corrosion; magnetron sputtering; wettability; antimicrobial activity; | |
DOI : 10.3390/molecules26164813 | |
来源: DOAJ |
【 摘 要 】
The search for coatings that extend the useful life of biomedical devices has been of great interest, and titanium has been of great relevance due to its innocuousness and low reactivity. This study contributes to the investigation of Ti/Ag films in different configurations (monolayer and multilayer) deposited by magnetron sputtering. The sessile droplet technique was applied to study wettability; greater film penetrability was obtained when Ag is the external layer, conferring high efficiency in cell adhesion. The morphological properties were characterized by SEM, which showed porous nuclei on the surface in the Ag coating and crystals embedded in the Ti film. The structural properties were studied by XRD, revealing the presence of TiO2 in the anatase crystalline phase in a proportion of 49.9% and the formation of a silver cubic network centered on the faces. Tafel polarization curves demonstrated improvements in the corrosion current densities of Ag/Ti/Ag/Ti/Ag/Ti/Ag/Ti and Ti/Ag compared to the Ag coating, with values of 0.1749, 0.4802, and 2.044 nA.m−2, respectively. Antimicrobial activity was evaluated against the bacteria Pseudomonas aeruginosa and Bacillus subtilis and the yeasts Candida krusei and Candida albicans, revealing that the Ti/Ag and Ag/Ti/Ag/Ti/Ag/Ti/Ag/Ti coatings exhibit promise in biomedical material applications.
【 授权许可】
Unknown