Frontiers of Agricultural Science and Engineering | |
An integrated approach to site-specific management zone delineation | |
Yuxin MIAO, David J. MULLA, Pierre C. ROBERT1  | |
[1] Precision Agriculture Center, Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN 55108, USA; | |
关键词: economically optimum nitrogen rate|fuzzy cluster analysis|precision nitrogen management|site-specific management|soil landscape property|yield map; | |
DOI : 10.15302/J-FASE-2018230 | |
来源: DOAJ |
【 摘 要 】
Dividing fields into a few relatively homogeneous management zones (MZs) is a practical and cost-effective approach to precision agriculture. There are three basic approaches to MZ delineation using soil and/or landscape properties, yield information, and both sources of information. The objective of this study is to propose an integrated approach to delineating site-specific MZ using relative elevation, organic matter, slope, electrical conductivity, yield spatial trend map, and yield temporal stability map (ROSE-YSTTS) and evaluate it against two other approaches using only soil and landscape information (ROSE) or clustering multiple year yield maps (CMYYM). The study was carried out on two no-till corn-soybean rotation fields in eastern Illinois, USA. Two years of nitrogen (N) rate experiments were conducted in Field B to evaluate the delineated MZs for site-specific N management. It was found that in general the ROSE approach was least effective in accounting for crop yield variability (8.0%–9.8%), while the CMYYM approach was least effective in accounting for soil and landscape (8.9%–38.1%), and soil nutrient and pH variability (9.4%–14.5%). The integrated ROSE-YSTTS approach was reasonably effective in accounting for the three sources of variability (38.6%–48.9%, 16.1%–17.3% and 13.2%–18.7% for soil and landscape, nutrient and pH, and yield variability, respectively), being either the best or second best approach. It was also found that the ROSE-YSTTS approach was effective in defining zones with high, medium and low economically optimum N rates. It is concluded that the integrated ROSE-YSTTS approach combining soil, landscape and yield spatial-temporal variability information can overcome the weaknesses of approaches using only soil, landscape or yield information, and is more robust for MZ delineation. It also has the potential for site-specific N management for improved economic returns. More studies are needed to further evaluate their appropriateness for precision N and crop management.
【 授权许可】
Unknown