期刊论文详细信息
BMC Bioinformatics
Prototyping a precision oncology 3.0 rapid learning platform
Michael Krauthammer1  Connor Sweetnam2  Robert Baertsch2  Jeff Shrager2  Simone Mocellin3  Nathaniel Knopf4 
[1] and Department of Surgery Oncology and Gastroenterology, University of Padova;Cancer Commons;Istituto Oncologico Veneto, IOV-IRCSS;Program for Computational Biology and Bioinformatics, Yale University;
关键词: Natural language processing;    Precision oncology;    Controlled natural language;    Nanopublication;    Treatment reasoning;    Rapid learning;   
DOI  :  10.1186/s12859-018-2374-0
来源: DOAJ
【 摘 要 】

Abstract Background We describe a prototype implementation of a platform that could underlie a Precision Oncology Rapid Learning system. Results We describe the prototype platform, and examine some important issues and details. In the Appendix we provide a complete walk-through of the prototype platform. Conclusions The design choices made in this implementation rest upon ten constitutive hypotheses, which, taken together, define a particular view of how a rapid learning medical platform might be defined, organized, and implemented.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次