期刊论文详细信息
Energies
Enhanced Thermoelectric Characteristics of Ag2Se Nanoparticle Thin Films by Embedding Silicon Nanowires
Seunggen Yang1  Sangsig Kim1  Kyoungah Cho1 
[1] Department of Electrical Engineering, Korea University, Seoul 02841, Korea;
关键词: thermoelectric;    silver selenide nanoparticles;    silicon nanowires;    thin film;   
DOI  :  10.3390/en13123072
来源: DOAJ
【 摘 要 】

A solution-processable Ag2Se nanoparticle thin film (NPTF) is a prospective thermoelectric material for plastic-based thermoelectric generators, but its low electrical conductivity hinders the fabrication of high performance plastic-based thermoelectric generators. In this study, we design Ag2Se NPTFs embedded with silicon nanowires (SiNWs) to improve their thermoelectric characteristics. The Seebeck coefficients are −233 and −240 µV/K, respectively, for a Ag2Se NPTF alone and a Ag2Se NPTF embedded with SiNWs. For the Ag2Se NPTF embedded with SiNWs, the electrical conductivity is improved from 0.15 to 18.5 S/m with the embedment of SiNWs. The thermal conductivities are determined by a lateral thermal conductivity measurement for nanomaterials and the thermal conductivities are 0.62 and 0.84 W/(m·K) for a Ag2Se NPTF alone and a Ag2Se NPTF embedded with SiNWs, respectively. Due to the significant increase in the electrical conductivity and the insignificant increase in its thermal conductivity, the output power of the Ag2Se NPTF embedded with SiNWs is 120 times greater than that of the Ag2Se NPTF alone. Our results demonstrate that the Ag2Se NPTF embedded with SiNWs is a prospective thermoelectric material for high performance plastic-based thermoelectric generators.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次