Molecules | |
A QM/MM Study on the Initiation Reaction of Firefly Bioluminescence—Enzymatic Oxidation of Luciferin | |
Mohan Yu1  Yajun Liu1  | |
[1] Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China; | |
关键词: firefly bioluminescence; luciferin oxidation; mechanism; single electron transfer; QM/MM; | |
DOI : 10.3390/molecules26144222 | |
来源: DOAJ |
【 摘 要 】
Among all bioluminescent organisms, the firefly is the most famous, with a high luminescent efficiency of 41%, which is widely used in the fields of biotechnology, biomedicine and so on. The entire bioluminescence (BL) process involves a series of complicated in-vivo chemical reactions. The BL is initiated by the enzymatic oxidation of luciferin (LH2). However, the mechanism of the efficient spin-forbidden oxygenation is far from being totally understood. Via MD simulation and QM/MM calculations, this article describes the complete process of oxygenation in real protein. The oxygenation of luciferin is initiated by a single electron transfer from the trivalent anionic LH2 (L3−) to O2 to form 1[L•2−…O2•−]; the entire reaction is carried out along the ground-state potential energy surface to produce the dioxetanone (FDO−) via three transition states and two intermediates. The low energy barriers of the oxygenation reaction and biradical annihilation involved in the reaction explain this spin-forbidden reaction with high efficiency. This study is helpful for understanding the BL initiation of fireflies and the other oxygen-dependent bioluminescent organisms.
【 授权许可】
Unknown