期刊论文详细信息
Entropy
Regularization, Bayesian Inference, and Machine Learning Methods for Inverse Problems
Ali Mohammad-Djafari1 
[1] Laboratoire des Signaux et Système, CNRS, CentraleSupélec-University Paris Saclay, 91192 Gif-sur-Yvette, France;
关键词: inverse problems;    regularization;    Bayesian inference;    machine learning;    artificial intelligence;    Gauss–Markov–Potts;   
DOI  :  10.3390/e23121673
来源: DOAJ
【 摘 要 】

Classical methods for inverse problems are mainly based on regularization theory, in particular those, that are based on optimization of a criterion with two parts: a data-model matching and a regularization term. Different choices for these two terms and a great number of optimization algorithms have been proposed. When these two terms are distance or divergence measures, they can have a Bayesian Maximum A Posteriori (MAP) interpretation where these two terms correspond to the likelihood and prior-probability models, respectively. The Bayesian approach gives more flexibility in choosing these terms and, in particular, the prior term via hierarchical models and hidden variables. However, the Bayesian computations can become very heavy computationally. The machine learning (ML) methods such as classification, clustering, segmentation, and regression, based on neural networks (NN) and particularly convolutional NN, deep NN, physics-informed neural networks, etc. can become helpful to obtain approximate practical solutions to inverse problems. In this tutorial article, particular examples of image denoising, image restoration, and computed-tomography (CT) image reconstruction will illustrate this cooperation between ML and inversion.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:9次