期刊论文详细信息
Mathematics
On the Canonical Foliation of an Indefinite Locally Conformal Kähler Manifold with a Parallel Lee Form
Francesco Esposito1  Sorin Dragomir2  Elisabetta Barletta2 
[1] Dipartimento di Matematica e Fisica Ennio De Giorgi, Universita` del Salento, 73100 Lecce, Italy;Dipartimento di Matematica, Informatica ed Economia, Universita` degli Studi della Basilicata, 85100 Potenza, Italy;
关键词: indefinite locally conformal Kähler manifold;    indefinite Hopf manifold;    indefinite Boothby metric;    indefinite Vaisman manifold;    Lee vector field;    Lee form;   
DOI  :  10.3390/math9040333
来源: DOAJ
【 摘 要 】

We study the semi-Riemannian geometry of the foliation F of an indefinite locally conformal Kähler (l.c.K.) manifold M, given by the Pfaffian equation ω=0, provided that ?ω=0 and c=ω0 (ω is the Lee form of M). If M is conformally flat then every leaf of F is shown to be a totally geodesic semi-Riemannian hypersurface in M, and a semi-Riemannian space form of sectional curvature c/4, carrying an indefinite c-Sasakian structure. As a corollary of the result together with a semi-Riemannian version of the de Rham decomposition theorem any geodesically complete, conformally flat, indefinite Vaisman manifold of index 2s, 0<s<n, is locally biholomorphically homothetic to an indefinite complex Hopf manifold CHsn(λ), 0<λ<1, equipped with the indefinite Boothby metric gs,n.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次