期刊论文详细信息
Geodesy and Geodynamics
Evaluation of ASTER GDEM in the northeastern margin of Tibetan Plateau in gravity reduction
Yawen She1  Wenbin Shen2  Guoqing Zhang2  Yiqing Zhu3  Ying Wang3 
[1] Institute of Geophysics, China Earthquake Administration(CEA), Beijing 100081, China;School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China;The Second Monitoring and Application Center, China Earthquake Administration (CEA), Xi'an, 700054, China;
关键词: ASTER GDEM;    GPS;    Tibetan plateau;    Relative gravity;    Gravity anomalies;   
DOI  :  10.1016/j.geog.2017.06.001
来源: DOAJ
【 摘 要 】

In this paper, we first transferred the normal height of ASTER GDEM v2 to GPS ellipsoidal height based on the EGM96, and analyzed the precision of this digital elevation model in the northeastern margin of Tibetan Plateau (NETP) combining with 89 ground GPS measurements. The results demonstrate that the standard deviation of the difference between ASTER GDEM and GPS results is 9.3 m, and the precision of ASTER GDEM in this region is approximately 10 m. We also calculated the free-air gravity anomalies using the relative gravity data and DEM model in NETP. The results show that the gravity anomalies are generally negative with local positive values, ranging from −156 to 43 mGal (10−5 m/s2). At last, we compared the EGM2008 free-air gravity anomalies (FGAs) with the ground gravity measurements, and their spatial patterns are similar. While the point-to-point difference between the modeling and measuring results shows great discrepancy. The free-air gravity anomalies of EGM2008 in this region range from −154 to 96 mGal, and the difference between EGM2008 and the ground measurements ranges from −102 to 50 mGal. The mean difference is −17.34 mGal, and the standard deviation is 46.69 mGal, which demonstrates that the EGM2008 has poor precision in the northeastern margin of Tibet Plateau.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次