Nanomaterials | |
Using Green, Economical, Efficient Two-Dimensional (2D) Talc Nanosheets as Lubricant Additives under Harsh Conditions | |
Shuangxi Li1  Ziqi Wang1  Jun Zhao1  Jie Dang1  Tong Gao1  Yijun Shi2  Weiyu Cao3  | |
[1] College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;Division of Machine Elements, Luleå University of Technology, 97187 Luleå, Sweden;State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; | |
关键词: 2D nanomaterial; additive; grease; green lubrication; friction; wear; | |
DOI : 10.3390/nano12101666 | |
来源: DOAJ |
【 摘 要 】
Two-dimensional (2D) nanomaterials have attracted much attention for lubrication enhancement of grease. It is difficult to disperse nanosheets in viscous grease and the lubrication performances of grease under harsh conditions urgently need to be improved. In this study, the 2D talc nanosheets are modified by a silane coupling agent with the assistance of high-energy ball milling, which can stably disperse in grease. The thickness and size of the talc nanosheet are about 20 nm and 2 µm. The silane coupling agent is successfully grafted on the surface of talc. Using the modified-talc nanosheet, the coefficient of friction and wear depth can be reduced by 40% and 66% under high temperature (150 °C) and high load (3.5 GPa), respectively. The enhancement of the lubrication and anti-wear performance is attributed to the boundary adsorbed tribofilm of talc achieving a repairing effect of the friction interfaces, the repairing effect of talc on the friction interfaces. This work provides green, economical guidance for developing natural lubricant additives and has great potential in sustainable lubrication.
【 授权许可】
Unknown