期刊论文详细信息
Marine Drugs
Molecular Docking Studies of Marine Diterpenes as Inhibitors of Wild-Type and Mutants HIV-1 Reverse Transcriptase
关键词: HIV-1;    mutants;    molecular docking;    brown algae diterpenes;    antiviral;    reverse transcriptase;   
DOI  :  10.3390/md11114127
来源: DOAJ
【 摘 要 】

AIDS is a pandemic responsible for more than 35 million deaths. The emergence of resistant mutations due to drug use is the biggest cause of treatment failure. Marine organisms are sources of different molecules, some of which offer promising HIV-1 reverse transcriptase (RT) inhibitory activity, such as the diterpenes dolabelladienotriol (THD, IC50 = 16.5 µM), (6R)-6-hydroxydichotoma-3,14-diene-1,17-dial (HDD, IC50 = 10 µM) and (6R)-6-acetoxydichotoma-3,14-diene-1,17-dial (ADD, IC50 = 35 µM), isolated from a brown algae of the genus Dictyota, showing low toxicity. In this work, we evaluated the structure-activity relationship (SAR) of THD, HDD and ADD as anti HIV-1 RT, using a molecular modeling approach. The analyses of stereoelectronic parameters revealed a direct relationship between activity and HOMO (Highest Occupied Molecular Orbital)-LUMO (Lowest Unoccupied Molecular Orbital) gap (ELUMO–EHOMO), where antiviral profile increases with larger HOMO-LUMO gap values. We also performed molecular docking studies of THD into HIV-1 RT wild-type and 12 different mutants, which showed a seahorse conformation, hydrophobic interactions and hydrogen bonds with important residues of the binding pocket. Based on in vitro experiments and docking studies, we demonstrated that mutations have little influence in positioning and interactions of THD. Following a rational drug design, we suggest a modification of THD to improve its biological activity.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次