期刊论文详细信息
Scientifica
Secondary Metabolism Gene Diversity and Cocultivation toward Isolation and Identification of Potent Bioactive Compounds Producing Bacterial Strains from Thailand’s Natural Resources
Suranat Phonghanpot1  Faongchat Jarintanan2 
[1] Biochemistry Unit;Faculty of Medical Technology;
DOI  :  10.1155/2022/2827831
来源: DOAJ
【 摘 要 】

Thailand was proposed to be rich unexplored source of microorganisms, especially bacterial strains. There should be bacteria with high secondary metabolite production potential in the natural resources that are still unidentified. Moreover, they might not produce secondary metabolites in standard laboratory culture condition after isolation, in which coculture condition would help us pursuing the bacteria to produce bioactive metabolites. Here, we aimed to identify new bacterial strains with high secondary metabolite production potential from Thailand’s natural resources. To achieve the goal, we performed bacteria isolation, phylogenetic analysis, degenerate PCR of secondary metabolism genes, cocultivation, antibacterial analysis, and HPLC chemical profiling. We isolated distinct 40 bacterial strains, which have over 98% 16S rRNA sequence similarity with known species. There were 22, 31, and 29 strains giving positive PCR amplification of NRPS, PKS, and TPS genes, respectively. Among them, Bacillus licheniformis RSUCC0101 had the highest number of PCR products, 26. In standard single culture condition, crude extracts prepared from Bacillus safensis RSUCC0021 and Bacillus amyloliquefaciens RSUCC0282 could inhibit the growth of Staphylococcus aureus ATCC25923. Furthermore, the cocultivation and HPLC analyses showed that the extracts prepared from 3 pairs of culture between Staphylococcus sp. RSUCC0020, Micrococcus luteus RSUCC0053, Staphylococcus sp. RSUCC0087, and Staphylococcus pasteuri RSUCC0090 could inhibit the growth of Staphylococcus aureus ATCC25923 and produced distinct chemical profiles from their single culture condition. Our study led to the isolation and identification of several promising bacterial strains for production of secondary metabolites that might be useful in biomedical applications.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次