期刊论文详细信息
Frontiers in Genetics
Expression Profile Analysis Identifies a Novel Five-Gene Signature to Improve Prognosis Prediction of Glioblastoma
Guihua Tang1  Xianyong Fu2  Xingjun Jiang2  Wen Yin2  Yudong Cao2  Quanwei Zhou2  Zhaoping Wu2  Haixia Li3 
[1] Department of Clinical Laboratory, Hunan Provincial People’s Hospital (First Affiliated Hospital of Hunan Normal University), Changsha, China;Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China;Department of Operative Nursing, Xiangya Hospital of Central South University, Changsha, China;
关键词: glioblastoma;    differentially expressed genes;    gene signature;    prognosis;    TCGA;    GEO;   
DOI  :  10.3389/fgene.2019.00419
来源: DOAJ
【 摘 要 】

Glioblastoma multiforme (GBM) is the most aggressive primary central nervous system malignant tumor. The median survival of GBM patients is 12–15 months, and the 5 years survival rate is less than 5%. More novel molecular biomarkers are still urgently required to elucidate the mechanisms or improve the prognosis of GBM. This study aimed to explore novel biomarkers for GBM prognosis prediction. The gene expression profiles from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets of GBM were downloaded. A total of 2241 overlapping differentially expressed genes (DEGs) were identified from TCGA and GSE7696 datasets. By univariate COX regression survival analysis, 292 survival-related genes were found among these DEGs (p < 0.05). Functional enrichment analysis was performed based on these survival-related genes. A five-gene signature (PTPRN, RGS14, G6PC3, IGFBP2, and TIMP4) was further selected by multivariable Cox regression analysis and a prognostic model of this five-gene signature was constructed. Based on this risk score system, patients in the high-risk group had significantly poorer survival results than those in the low-risk group. Moreover, with the assistance of GEPIA http://gepia.cancer-pku.cn/, all five genes were found to be differentially expressed in GBM tissues compared with normal brain tissues. Furthermore, the co-expression network of the five genes was constructed based on weighted gene co-expression network analysis (WGCNA). Finally, this five-gene signature was further validated in other datasets. In conclusion, our study identified five novel biomarkers that have potential in the prognosis prediction of GBM.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次