期刊论文详细信息
Polymers
PCL-ZnO/TiO2/HAp Electrospun Composite Fibers with Applications in Tissue Engineering
Georgeta Voicu1  Sorin-Ion Jinga1  Cristina Busuioc1  Andreea-Ioana Zamfirescu1  Monica Enculescu2  Alexandru Evanghelidis2 
[1] Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, RO-011061 Bucharest, Romania;Laboratory of Multifunctional Materials and Structures, National Institute of Materials Physics, RO-077125 Magurele, Romania;
关键词: fibers;    composites;    scaffolds;    electrospinning;    tissue engineering;   
DOI  :  10.3390/polym11111793
来源: DOAJ
【 摘 要 】

The main objective of the tissue engineering field is to regenerate the damaged parts of the body by developing biological substitutes that maintain, restore, or improve original tissue function. In this context, by using the electrospinning technique, composite scaffolds based on polycaprolactone (PCL) and inorganic powders were successfully obtained, namely: zinc oxide (ZnO), titanium dioxide (TiO2) and hydroxyapatite (HAp). The novelty of this approach consists in the production of fibrous membranes based on a biodegradable polymer and loaded with different types of mineral powders, each of them having a particular function in the resulting composite. Subsequently, the precursor powders and the resulting composite materials were characterized by the structural and morphological point of view in order to determine their applicability in the field of bone regeneration. The biological assays demonstrated that the obtained scaffolds represent support that is accepted by the cell cultures. Through simulated body fluid immersion, the biodegradability of the composites was highlighted, with fiber fragmentation and surface degradation within the testing period.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次