期刊论文详细信息
Materials
Characterization of Slurry-Cast Layer Compounds for 3D Printing of High Strength Casting Cores
Joachim Vogt1  Jan Angenoorth2  Florian Ettemeyer3  Daniel Günther3  Wolfram Volk3  Johannes Spiegel3  Patricia Erhard3 
[1] Center for High-Temperature Materials and Design HTL/Fraunhofer Institute for Silicate Research ISC, Gottlieb-Keim-Str. 62, 95448 Bayreuth, Germany;Chair of Metal Forming and Casting, Technical University of Munich (TUM), Walther-Meissner-Str. 4, 85748 Garching, Germany;Fraunhofer Institute for Casting, Composite and Processing Technology IGCV, Lichtenbergstr. 15, 85748 Garching, Germany;
关键词: additive manufacturing;    casting cores;    ceramics;    characterization;    drying;    sintering;   
DOI  :  10.3390/ma14206149
来源: DOAJ
【 摘 要 】

Additive manufacturing of casting cores and molds is state of the art in industrial application today. However, improving the properties of chemically bonded casting cores regarding temperature stability, bending strength, and surface quality is still a major challenge. The process of slurry-based 3D printing allows the fabrication of dense structures and therefore sinterable casting cores. This paper presents a study of the slurry-based fabrication of ceramic layer compounds focusing on the drying process and the achievable properties in slurry-based 3D printing of casting cores. This study aims at contributing to a better understanding of the interrelations between the drying conditions in the 3D printing process and the properties of sintered specimens relating thereto. The drying intensity influenced by an IR heater as well as the drying periods are varied for layer thicknesses of 50, 75, and 100 µm. Within this study, a process window applicable for 3D printing of sinterable casting cores is identified and further indications are given for optimization potentials. At layer heights of 75 µm, bending strengths between ~8 and 11 MPa as well as densities of around 50% of the theoretical density were achieved. Since the mean roughness depth Rz is determined to be <30 µm in plane, an application of slurry-based 3D printing in investment casting is conceivable.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次