期刊论文详细信息
Sensors
Fiber Bragg Grating Dilatometry in Extreme Magnetic Field and Cryogenic Conditions
George Rodriguez1  Priscila F. S. Rosa2  Carolina Corvalán Moya3  Ramzy Daou4  Mark Wartenbe5  Franziska Weickert5  Jonathan B. Betts6  Scott A. Crooker6  Fedor F. Balakirev6  Marcelo Jaime6  Vivien Zapf6 
[1] Center for Integrated Nanotechnologies Group, Materials, Physics, and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;Condensed Matter and Magnet Science Group, Materials, Physics, and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;Institute for Materials Science, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;Laboratoire de Cristallographie et Sciences des Matériaux, Normandie Université, Ecole Nationale Supérieure d'Ingénieurs de Caen, Université de Caen Normandie, Centre National de la Recherche Scientifique, 14050 Caen, France;National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA;National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;
关键词: single-mode fiber Bragg gratings;    FBG;    large pulsed magnetic fields;    superconducting magnets;    magnetostriction;    thermal expansion;    quantum oscillations;    phase transitions;   
DOI  :  10.3390/s17112572
来源: DOAJ
【 摘 要 】

In this work, we review single mode SiO2 fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity (ΔL/L) as low as a few parts in one hundred million (≈10−8). The impact of experimental artifacts, such as those originating in the temperature dependence of the fiber’s index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次