Remote Sensing | |
Geometrical Segmentation of Multi-Shape Point Clouds Based on Adaptive Shape Prediction and Hybrid Voting RANSAC | |
Zhen Chen1  Shengzhi Huang1  Bo Xu1  Qing Zhu1  Xuming Ge1  Tianyang Liu2  Di Wu2  Yeting Zhang3  | |
[1] The Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China;The PLA Key Laboratory of Hydrographic Surveying and Mapping, Dalian Naval Academy, Dalian 116018, China;The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China; | |
关键词: point cloud; segmentation; RANSAC; point voxel; adaptive threshold; building reconstruction; | |
DOI : 10.3390/rs14092024 | |
来源: DOAJ |
【 摘 要 】
This work proposes the use of a robust geometrical segmentation algorithm to detect inherent shapes from dense point clouds. The points are first divided into voxels based on their connectivity and normal consistency. Then, the voxels are classified into different types of shapes through a multi-scale prediction algorithm and multiple shapes including spheres, cylinders, and cones are extracted. Next, a hybrid voting RANSAC algorithm is adopted to separate the point clouds into corresponding segments. The point–shape distance, normal difference, and voxel size are all considered as weight terms when evaluating the proposed shape. Robust voxels are weighted as a whole to ensure efficiency, while single points are considered to achieve the best performance in the disputed region. Finally, graph-cut-based optimization is adopted to deal with the competition among different segments. Experimental results and comparisons indicate that the proposed method can generate reliable segmentation results and provide the best performance compared to the benchmark methods.
【 授权许可】
Unknown