期刊论文详细信息
IEEE Access
Automatic Segmentation of Multiple Structures in Knee Arthroscopy Using Deep Learning
Yu Takeda1  Fumio Sasazawa2  Ross Crawford3  Gustavo Carneiro4  Fengbei Liu4  Gabriel Maicas4  Ajay K. Pandey5  Yaqub Jonmohamadi5  Jonathan Roberts5 
[1] Department of Orthopaedic Surgery, Hyogo College of Medicine, Nishinomiya, Japan;Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan;Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia;School of Computer Science, Australian Institute for Machine Learning, The University of Adelaide, Adelaide, SA, Australia;School of Electrical Engineering and Robotics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia;
关键词: Arthroscopy;    artificial intelligence;    auto segmentation;    deep learning;    endoscopy;    surgery;   
DOI  :  10.1109/ACCESS.2020.2980025
来源: DOAJ
【 摘 要 】

Minimally invasive surgery (MIS) is among the preferred procedures for treating a number of ailments as patients benefit from fast recovery and reduced blood loss. The trade-off is that surgeons lose direct visual contact with the surgical site and have limited intra-operative imaging techniques for real-time feedback. Computer vision methods as well as segmentation and tracking of the tissues and tools in the video frames, are increasingly being adopted to MIS to alleviate such limitations. So far, most of the advances in MIS have been focused on laparoscopic applications, with scarce literature on knee arthroscopy. Here for the first time, we propose a new method for the automatic segmentation of multiple tissue structures for knee arthroscopy. The training data of 3868 images were collected from 4 cadaver experiments, 5 knees, and manually contoured by two clinicians into four classes: Femur, Anterior Cruciate Ligament (ACL), Tibia, and Meniscus. Our approach adapts the U-net and the U-net++ architectures for this segmentation task. Using the cross-validation experiment, the mean Dice similarity coefficients for Femur, Tibia, ACL, and Meniscus are 0.78, 0.50, 0.41, 0.43 using the U-net and 0.79, 0.50, 0.51, 0.48 using the U-net++. While the reported segmentation method is of great applicability in terms of contextual awareness for the surgical team, it can also be used for medical robotic applications such as SLAM and depth mapping.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次