| Membranes | |
| A New Design of Tubular Ceramic Membrane Module for Oily Water Treatment: Multiphase Flow Behavior and Performance Evaluation | |
| JoãoM. P. Q. Delgado1  SeverinoR.Farias Neto2  AntonioG. B. Lima3  AdrianoS. Cabral3  RicardoS. Gomez3  LucasP. C. Nascimento3  VansostenesA. M. Miranda4  GuilhermeL.Oliveira Neto5  DanielC. M. Cavalcante6  NíveaG. N. Oliveira7  | |
| [1] CONSTRUCT-LFC, Department of Civil Engineering, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal;Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil;Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Paraíba, Brazil;Federal Institute of Education, Science and Technology of Pernambuco, Belo Jardim 55145-065, Pernambuco, Brazil;Federal Institute of Education, Science and Technology of Piauí, Floriano 64808-475, Piauí, Brazil;Federal Institute of Education, Science and Technology of the Sertão Pernambucano, Serra Talhada 56915-899, Pernambuco, Brazil;Technical School of Floriano, Federal University of Piauí, Floriano 64808-605, Piauí, Brazil; | |
| 关键词: produced water; membrane filtration; computational fluid dynamics; ANSYS Fluent; | |
| DOI : 10.3390/membranes10120403 | |
| 来源: DOAJ | |
【 摘 要 】
Petroleum has been extracted from oil reservoirs using different techniques. This activity is accompanied for a large amount of water and sometimes mixed with gas. This produced water has a high oil concentration and other toxic chemical compounds, thus, it must be treated to be reused or released to environment according to environmental protection regulations. Currently, ceramic membrane technology has been employed in the wastewater treatment, due to its high benefit–cost ratio. In this sense, this work aims to study the oil–water mixture separation process using a new configuration of tubular ceramic membrane module by computational fluid dynamic (ANSYS Fluent software). The proposed model is composed of mass and linear momentum conservation equations coupled to Darcy’s law and SST k-ω turbulence model. Results of the volumetric fraction, pressure, and velocity distribution of the oil and water phases are presented and discussed. The results indicated that the proposed model and new device both have great potential to be used on the water/oil separation process and that the transmembrane pressure remains constant in the axial direction and decreases radially through the membranes, indicating an efficient system that favors the transport of clean water and oil retention.
【 授权许可】
Unknown