期刊论文详细信息
Biomedicines
Gas6 Ameliorates Inflammatory Response and Apoptosis in Bleomycin-Induced Acute Lung Injury
Eun-Mi Park1  Youn-Hee Choi2  Bo-Min Kim2  Ye-Ji Lee2  Jihee Lee Kang2 
[1] Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07804, Korea;Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea;
关键词: Gas6;    bleomycin;    inflammation;    apoptosis;    efferocytosis;   
DOI  :  10.3390/biomedicines9111674
来源: DOAJ
【 摘 要 】

Acute lung injury (ALI) is characterized by alveolar damage, lung edema, and exacerbated inflammatory response. Growth arrest-specific protein 6 (Gas6) mediates many different functions, including cell survival, proliferation, inflammatory signaling, and apoptotic cell clearance (efferocytosis). The role of Gas6 in bleomycin (BLM)-induced ALI is unknown. We investigated whether exogenous administration of mouse recombinant Gas6 (rGas6) has anti-inflammatory and anti-apoptotic effects on BLM-induced ALI. Compared to mice treated with only BLM, the administration of rGas6 reduced the secretion of proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2, and increased the secretion of hepatocyte growth factor in bronchoalveolar lavage (BAL) fluid. rGas6 administration also reduced BLM-induced inflammation and apoptosis as evidenced by reduced neutrophil recruitment into the lungs, total protein levels in BAL fluid, caspase-3 activity, and TUNEL-positive lung cells in lung tissue. Apoptotic cell clearance by alveolar macrophages was also enhanced in mice treated with both BLM and rGas6 compared with mice treated with only BLM. rGas6 also had pro-resolving and anti-apoptotic effects in mouse bone marrow-derived macrophages and alveolar epithelial cell lines stimulated with BLM in vitro. These findings indicate that rGas6 may play a protective role in BLM-induced ALI.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次