Mathematics | |
On Reliability Estimation of Lomax Distribution under Adaptive Type-I Progressive Hybrid Censoring Scheme | |
Yuhlong Lio1  Mohammed Albassam2  Hassan Okasha2  | |
[1] Department of Mathematical Sciences, University of South Dakota, Vermillion, SD 57069, USA;Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; | |
关键词: Bayesian estimate; E-Bayesian estimate; empirical Bayesian; Lomax distribution; maximum likelihood estimate; asymmetric loss function; | |
DOI : 10.3390/math9222903 | |
来源: DOAJ |
【 摘 要 】
Bayesian estimates involve the selection of hyper-parameters in the prior distribution. To deal with this issue, the empirical Bayesian and E-Bayesian estimates may be used to overcome this problem. The first one uses the maximum likelihood estimate (MLE) procedure to decide the hyper-parameters; while the second one uses the expectation of the Bayesian estimate taken over the joint prior distribution of the hyper-parameters. This study focuses on establishing the E-Bayesian estimates for the Lomax distribution shape parameter functions by utilizing the Gamma prior of the unknown shape parameter along with three distinctive joint priors of Gamma hyper-parameters based on the square error as well as two asymmetric loss functions. These two asymmetric loss functions include a general entropy and LINEX loss functions. To investigate the effect of the hyper-parameters’ selections, mathematical propositions have been derived for the E-Bayesian estimates of the three shape functions that comprise the identity, reliability and hazard rate functions. Monte Carlo simulation has been performed to compare nine E-Bayesian, three empirical Bayesian and Bayesian estimates and MLEs for any aforementioned functions. Additionally, one simulated and two real data sets from industry life test and medical study are applied for the illustrative purpose. Concluding notes are provided at the end.
【 授权许可】
Unknown