期刊论文详细信息
Sensors
Design of a Multipurpose Photonic Chip Architecture for THz Dual-Comb Spectrometers
Cristina de Dios1  Pedro Martín-Mateos1  Pablo Acedo1  Andrés Betancur-Pérez2 
[1] Department of Electronic Technology, Universidad Carlos III de Madrid, 28915 Leganés, Spain;Department of Electronics and Telecommunications, Instituto Tecnológico Metropolitano, 050013 Medellín, Colombia;
关键词: Dual-Comb;    frequency shifter;    optical combs;    optical injection locking;    photonic integrated circuit;    THz spectroscopy;   
DOI  :  10.3390/s20216089
来源: DOAJ
【 摘 要 】

In this work, we present a multipurpose photonic integrated circuit capable of generating multiheterodyne complex Dual-Combs (DC) THz signals. Our work focuses on translating the functionality of an electro-optic tunable DC system into a photonic chip employing standard building blocks to ensure the scalability and cost efficiency of the integrated device. The architecture we analyze for integration is based on three stages: a seed comb, a mode selection stage and a DC stage. This final DC stage includes a frequency shifter, a key element to improve the final detection of the THz signals and obtain real-time operation. This investigation covers three key aspects: (1) a solution for comb line selection on GHz spaced combs using OIL or OPLL on photonic chips is studied and evaluated, (2) a simple and versatile scheme to produce a frequency shift using the double sideband suppressed carrier modulation technique and an asymmetric Mach Zehnder Interferometer to filter one of the sidebands is proposed, and (3) a multipurpose architecture that can offer a versatile effective device, moving from application-specific PICs to general-purpose PICs. Using the building blocks (BBs) available from an InP-based foundry, we obtained simulations that offer a high-quality Dual-Comb frequency shifted signal with a side mode suppression ratio around 21 dB, and 41 dB after photodetection with an intermediate frequency of 1 MHz. We tested our system to generate a Dual-Comb with 10 kHz of frequency spacing and an OOK modulation with 5 Gbps which can be down-converted to the THz range by a square law detector. It is also important to note that the presented architecture is multipurpose and can also be applied to THz communications. This design is a step to enable a commercial THz photonic chip for multiple applications such as THz spectroscopy, THz multispectral imaging and THz telecommunications and offers the possibility of being fabricated in a multi-project wafer.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次