期刊论文详细信息
Frontiers in Physiology
Weekly Time Course of Neuro-Muscular Adaptation to Intensive Strength Training
Syn Schmitt1  Wilfried Alt2  Niklas Brown2  Dieter Bubeck2  Johannes Weickenmeier3  Ellen Kuhl4  Daniel F. B. Haeufle6 
[1] Biomechanics and Biorobotics, University of StuttgartStuttgart, Germany;Department of Biomechanics and Sports Biology, Institute of Sports and Movement Science, University of StuttgartStuttgart, Germany;Department of Mechanical Engineering, Stanford UniversityStanford, CA, United States;Departments of Mechanical Engineering and Bioengineering, Stanford UniversityStanford, CA, United States;Multi-Level Modeling in Motor Control and Rehabilitation Robotics, Hertie Institute for Clinical Brain Research, Eberhard-Karls Universität TübingenTübingen, Germany;SC SimTech—Stuttgart Centre for Simulation Sciences, University of StuttgartStuttgart, Germany;
关键词: virtual gym;    muscle volume;    interpolated twitch;    resistance training;    modeling;    simulation;   
DOI  :  10.3389/fphys.2017.00329
来源: DOAJ
【 摘 要 】

Detailed description of the time course of muscular adaptation is rarely found in literature. Thus, models of muscular adaptation are difficult to validate since no detailed data of adaptation are available. In this article, as an initial step toward a detailed description and analysis of muscular adaptation, we provide a case report of 8 weeks of intense strength training with two active, male participants. Muscular adaptations were analyzed on a morphological level with MRI scans of the right quadriceps muscle and the calculation of muscle volume, on a voluntary strength level by isometric voluntary contractions with doublet stimulation (interpolated twitch technique) and on a non-voluntary level by resting twitch torques. Further, training volume and isokinetic power were closely monitored during the training phase. Data were analyzed weekly for 1 week prior to training, pre-training, 8 weeks of training and 2 weeks of detraining (no strength training). Results show a very individual adaptation to the intense strength training protocol. While training volume and isokinetic power increased linearly during the training phase, resting twitch parameters decreased for both participants after the first week of training and stayed below baseline until de-training. Voluntary activation level showed an increase in the first 4 weeks of training, while maximum voluntary contraction showed only little increase compared to baseline. Muscle volume increased for both subjects. Especially training status seemed to influence the acute reaction to intense strength training. Fatigue had a major influence on performance and could only be overcome by one participant. The results give a first detailed insight into muscular adaptation to intense strength training on various levels, providing a basis of data for a validation of muscle fatigue and adaptation models.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次