| Nanomaterials | |
| Enhanced Electrochemical Behavior of Peanut-Shell Activated Carbon/Molybdenum Oxide/Molybdenum Carbide Ternary Composites | |
| Ncholu Manyala1  BridgetK. Mutuma1  NdeyeF. Sylla1  Samba Sarr1  Astou Seck2  Mohamed Chaker2  NdeyeM. Ndiaye3  BallaD. Ngom3  | |
| [1] Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028, South Africa;Institut National de la Recherche Scientifique Centre—Énergie Matériaux Télécommunications 1650, Boulevard Lionel Boulet, Varennes, QC J3X 1S2, Canada;Laboratoire de Photonique Quantique, d’Energie et de Nano-Fabrication, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (UCAD), Dakar-Fann Dakar B.P. 5005, Senegal; | |
| 关键词: porous carbon; ternary composite; molybdenum oxide; molybdenum carbide; energy storage; | |
| DOI : 10.3390/nano11041056 | |
| 来源: DOAJ | |
【 摘 要 】
Biomass-waste activated carbon/molybdenum oxide/molybdenum carbide ternary composites are prepared using a facile in-situ pyrolysis process in argon ambient with varying mass ratios of ammonium molybdate tetrahydrate to porous peanut shell activated carbon (PAC). The formation of MoO2 and Mo2C nanostructures embedded in the porous carbon framework is confirmed by extensive structural characterization and elemental mapping analysis. The best composite when used as electrodes in a symmetric supercapacitor (PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-1) exhibited a good cell capacitance of 115 F g−1 with an associated high specific energy of 51.8 W h kg−1, as well as a specific power of 0.9 kW kg−1 at a cell voltage of 1.8 V at 1 A g−1. Increasing the specific current to 20 A g−1 still showcased a device capable of delivering up to 30 W h kg−1 specific energy and 18 kW kg−1 of specific power. Additionally, with a great cycling stability, a 99.8% coulombic efficiency and capacitance retention of ~83% were recorded for over 25,000 galvanostatic charge-discharge cycles at 10 A g−1. The voltage holding test after a 160 h floating time resulted in increase of the specific capacitance from 74.7 to 90 F g−1 at 10 A g−1 for this storage device. The remarkable electrochemical performance is based on the synergistic effect of metal oxide/metal carbide (MoO2/Mo2C) with the interconnected porous carbon. The PAC/MoO2/Mo2C ternary composites highlight promising Mo-based electrode materials suitable for high-performance energy storage. Explicitly, this work also demonstrates a simple and sustainable approach to enhance the electrochemical performance of porous carbon materials.
【 授权许可】
Unknown