| Algorithms | |
| Short-Term Firm-Level Energy-Consumption Forecasting for Energy-Intensive Manufacturing: A Comparison of Machine Learning and Deep Learning Models | |
| Djamel Sadok1  IagoRichard Rodrigues1  AndreaMaria N. C. Ribeiro1  PedroRafael X. do Carmo1  Theo Lynn2  PatriciaTakako Endo3  | |
| [1] Centro de Informática, Universidade Federal de Pernambuco, Pernambuco 50670-901, Brazil;Irish Institute of Digital Business, Dublin City University, 9 Dublin, Ireland;Programa de Pós-Graduação em Engenharia da Computação, Universidade de Pernambuco, Pernambuco 50100-010, Brazil; | |
| 关键词: short-term load forecasting; STLF; deep learning; RNN; LSTM; GRU; | |
| DOI : 10.3390/a13110274 | |
| 来源: DOAJ | |
【 摘 要 】
To minimise environmental impact, to avoid regulatory penalties, and to improve competitiveness, energy-intensive manufacturing firms require accurate forecasts of their energy consumption so that precautionary and mitigation measures can be taken. Deep learning is widely touted as a superior analytical technique to traditional artificial neural networks, machine learning, and other classical time-series models due to its high dimensionality and problem-solving capabilities. Despite this, research on its application in demand-side energy forecasting is limited. We compare two benchmarks (Autoregressive Integrated Moving Average (ARIMA) and an existing manual technique used at the case site) against three deep-learning models (simple Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU)) and two machine-learning models (Support Vector Regression (SVR) and Random Forest) for short-term load forecasting (STLF) using data from a Brazilian thermoplastic resin manufacturing plant. We use the grid search method to identify the best configurations for each model and then use Diebold–Mariano testing to confirm the results. The results suggests that the legacy approach used at the case site is the worst performing and that the GRU model outperformed all other models tested.
【 授权许可】
Unknown