Remote Sensing | |
Using Apparent Electrical Conductivity as Indicator for Investigating Potential Spatial Variation of Soil Salinity across Seven Oases along Tarim River in southern Xinjiang, China | |
Qian Shi1  Shengtian Yang2  Fei Wang2  Yang Wei2  Jianli Ding2  | |
[1] School of Geography and Planning, Sun Yat-Sen University, West Xingang Road, Guangzhou 510275, China;Xinjiang Common University Key Lab of Smart City and Environmental Stimulation, College of Resource and Environmental Sciences, Xinjiang University, Urumqi 830046, China; | |
关键词: apparent soil electrical conductivity; random forest; Tarim river; digital soil mapping; oasis; | |
DOI : 10.3390/rs12162601 | |
来源: DOAJ |
【 摘 要 】
Soil salinization is a major soil health issue globally. Over the past 40 years, extreme weather and increasing human activity have profoundly changed the spatial distribution of land use and water resources across seven oases in southern Xinjiang, China. However, knowledge of the spatial distribution of soil salinization in this region has not been updated since a land survey in the 1970s to 1980s (the harmonized world soil database, HWSD) due to scarce observational data. Now, given the uncertainty raised by near future climate change, it is important to develop quick, reliable and accurate estimates of soil salinity at larger scales for a better manage strategy to the local fragile ecosystem that with limited land and water resources. This study collected electromagnetic induction (EMI) readings near surface soil to update on the spatial distribution and changes of water and salt in the region and to map apparent electrical conductivity (ECa, mS·m−1), in four coil configurations: vertical dipole in 1.50 m (ECav01) and 0.75 m (ECav05), so as the horizontal dipole in 0.75 m (ECah01) and 0.37 m (ECah05), then all the ECa coil configurations were modeled with random forest algorithm. The validation results showed an R2 range of 0.77–0.84 and an RMSE range of 115.17–142.76 mS·m−1. The validation accuracy of deep ECa dipole (ECah01, ECav05, and ECav01) was greater than that of shallow ECa (ECah05), as the former integrated a thicker portion of the subsurface. The range of EC spatial variability that can be explained by ECa is 0.19–0.36 (farmland, mean value is 0.28), grassland is 0.16–0.49 (shrub/grassland, mean value is 0.34), and bare land is 0.28–0.70 (bare land, mean value is 0.56). Among them, ECav01 has the best predictive ability. As the depth increased, the influence of soil-related variables decreased, and the contribution of climate-related variables increased. The main factor affecting ECa variation was climate-related variables, followed by vegetation-related variables and soil-related variables. Scatter plot show ECa was significantly correlated with ECe_HWSD_030 (0–30 cm, r = 0.482, p < 0.01) and ECe_HWSD_30100 (30–100 cm, r = 0.556, p < 0.01). The predicted spatial ECa maps were similar to the ECe values from HWSD, but also implies that the distribution of soil water and salt has undergone tremendous changes since 1980s. The study demonstrates that EMI data provide a reliable and cost-effective tool for obtaining high-resolution soil maps that can be used for better land evaluation and soil improvement at larger scales.
【 授权许可】
Unknown