期刊论文详细信息
Applied Sciences
A Hybrid Linear Quadratic Regulator Controller for Unmanned Free-Swimming Submersible
Muhammad Rashid1  Mohammed H. Sinky1  Hassan Tariq2  Muhammad Asfand Hafeez2  Saud S. Alotaibi3 
[1] Department of Computer Engineering, Umm Al-Qura University, Makkah 21955, Saudi Arabia;Department of Electrical Engineering, School of Engineering, University of Management and Technology (UMT), Lahore 54770, Pakistan;Department of Information Systems, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
关键词: linear quadratic regulator;    lead-compensator;    Riccati model;    proportional-integral-derivative;   
DOI  :  10.3390/app11199131
来源: DOAJ
【 摘 要 】

An unmanned free-swimming submersible (UFSS) is designed to perform certain tasks in water without interposing humans. The vehicle’s control is achieved by integrating mathematical (analog) and non-mathematical (embedded) controllers. The main goal of integrated controllers is to overcome the environmental disturbances and noise of the sensor data. These disturbances, as well as the noise data, are generated during steering, diving, and speed control. The amplitude of disturbances and noise varies with the depth and intensity of water waves. This article presents a robust hybrid linear quadratic regulator (HLQR) controller for UFSS. The presented controller targets the desired state of the UFSS in the presence of a disturbing environment. The hybrid approach is achieved by employing: (1) two linear quadratic regulators or controllers and (2) a mathematical structure of the Riccati equation. Consequently, the proposed HLQR controller is integrated into the UFSS system to evaluate the response in terms of settling time, rise time, overshoot, and steady-state error. Furthermore, the robustness of the HLQR is investigated by considering the feedback to step response and hydrodynamic disturbances. The implementation results reveal that the proposed controller outperforms state of the art controllers, such as proportional-integral-derivative and lead-compensator controllers.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次