期刊论文详细信息
Micromachines
Portable Rice Disease Spores Capture and Detection Method Using Diffraction Fingerprints on Microfluidic Chip
Hanping Mao1  Zhuo Li2  Tao Li2  Lirong Zou2  Chiyuan Chen2  Ning Yang2  Rongbiao Zhang2 
[1] School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, China;School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China;
关键词: crop disease;    lensfree;    light diffraction;    image processing;    microfluidic;   
DOI  :  10.3390/mi10050289
来源: DOAJ
【 摘 要 】

Crop diseases cause great harm to food security, 90% of these are caused by fungal spores. This paper proposes a crop diseases spore detection method, based on the lensfree diffraction fingerprint and microfluidic chip. The spore diffraction images are obtained by a designed large field of view lensless diffraction detection platform which contains the spore enrichment microfluidic chip and lensless imaging module. By using the microfluidic chip to enrich and isolate spores in advance, the required particles can be captured in the chip enrichment area, and other impurities can be filtered to reduce the interference of impurities on spore detection. The light source emits partially coherent light and irradiates the target to generate diffraction fingerprints, which can be used to distinguish spores and impurities. According to the theoretical analysis, two parameters, Peak to Center ratio (PCR) and Peak to Valley ratio (PVR), are found to quantify these spores. The correlation coefficient between the detection results of rice blast spores by the constructed device and the results of microscopic artificial identification was up to 0.99, and the average error rate of the proposed device was only 5.91%. The size of the device is only 4 cm × 4 cm × 5 cm, and the cost is less than $150, which is one thousandth of the existing equipment. Therefore, it may be widely used as an early detection method for crop disease caused by spores.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次