期刊论文详细信息
Climate
Evaluating the Effect of Physics Schemes in WRF Simulations of Summer Rainfall in North West Iran
Ebrahim Fattahi1  Abbas Ranjbar1  Sadegh Zeyaeyan1  Majid Azadi1  Majid Vazifedoust2 
[1] Atmospheric Science & Meteorological Research Center (ASMRC), Tehran P.O. Box 14977-16385, Iran;Water Engineering Department, University of Guilan, Rasht P.O. Box 41889-58643, Iran;
关键词: WRF model;    schemes;    summer rainfall;    Northwest of Iran;    cumulus;    PBL;    microphysics;   
DOI  :  10.3390/cli5030048
来源: DOAJ
【 摘 要 】

The numerical weather forecast model Weather Research and Forecasting (WRF) has a range of applications because it offers multiple physical options, enabling the users to optimizing WRF for specific scales, geographical locations and applications. Summer rainfall cannot be predicted well in North West of Iran (NWI). Most of them are convective. Sometimes rainfall is heavy, so that it causes flash flood. In this research, some configurations of WRF were tested with four summer rainfall events in NWI to find the best configuration. Five cumulus, four planetary boundary layers (PBL) and two microphysical schemes were combined. Twenty-six different configurations (models) were implemented at two resolutions of 5 and 15 km for duration of 48 h. Four events, with over 20 mm convective daily rainfall total, were selected at NWI during summer season between 2010 and 2015. These events were tested by developing 26 unique models. Results were verified using several methods. The aim was to find the best results during the first 24 h. Although no single configuration can be introduced for all times, thresholds, and atmospheric system to provide reliable and accurate forecast, the best configuration for WRF can be identified. Kain-Fritsch (new Eta), Betts-Miller-Janjic, Modified Kain-Fritsch, Multi-scale Kain-Fritsch and newer Tiedtke cumulus schemes and Mellor-Yamada-Janjic, Shin-Hong ‘scale-aware’, Medium Range Forecast (MRF) and Yonsei University (YSU) Planetary Boundary Layer schemes and Kessler, WRF Single Moment 3 class simple ice (WSM3) microphysics schemes were selected. The result show that Cumulus schemes are the most sensitive and Microphysics schemes are the less sensitive. The comparison of 15 km and 5 km resolution simulations do not show obvious advantages in downscaling the results. Configuration with newer Tiedtke cumulus, Mellor-Yamada-Janjic PBL, WSM3 and Kessler microphysics schemes give the best results for the 5 and 15 km resolutions. The output image of models and statistical methods verification indexes show that WRF could not accurately simulate convective rainfall in the NWI in summer.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次