期刊论文详细信息
IEEE Access
Model Predictive Control for Indirect Boost Matrix Converter Based on Virtual Synchronous Generator
Hassan Bevrani1  Yuta Yanagisawa2  Jonggrist Jongudomkarn2  Jia Liu2  Toshifumi Ise3 
[1] Department of Electrical Engineering, Smart/Micro Grids Research Center, University of Kurdistan, Sanandaj, Iran;Division of Electrical, Electronic, and Information Engineering, Osaka University, Osaka, Japan;Nara&x2013;
关键词: AC-AC converters;    distributed power generations;    indirect matrix converter;    power control;    power system stability;    predictive control;   
DOI  :  10.1109/ACCESS.2020.2983115
来源: DOAJ
【 摘 要 】

Indirect boost matrix converter is potentially a great alternative to a back-to-back converter for permanent magnet synchronous generators based distributed generation since it can achieve a voltage-boost functionality without utilizing a bulky DC-link capacitor. Despite the success of the indirect boost matrix converter topology, there still exist some issues in the relevant control structure that must be resolved appropriately. First, the existing controls are grid-following controls, which is incapable of islanded operation. Secondly, the exiting controls generate a highly distorted current waveform, which needs to be suppressed by a passive damping resistor. Moreover, without an energy storage element, the distributed generations have no short-time power reserve unit for providing an inertial power to support the utility. In order to solve these issues, a novel approach based on a modified virtual synchronous control and a finite control set model predictive control scheme is proposed in this paper. The former is adopted to ensure proper operations in both grid-connected and islanded modes and to emulate the virtual inertial response by drawing inertial power from the input source. The latter utilizes multi-controls of real-time variables to avoid complicated coupling between the input side and the output side controls and to grant the indirect boost matrix converter with the capability of providing active filter resonance damping. Comparative studies between the proposed control and its existing counterpart are conducted with several simulations in PSCAD/EMTDC software to demonstrate the superior performances of the proposed strategy. Finally, the proposed control is verified in a scale-down experiment testbed.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次