期刊论文详细信息
Land
Spaceborne Estimation of Leaf Area Index in Cotton, Tomato, and Wheat Using Sentinel-2
Gregoriy Kaplan1  Offer Rozenstein1 
[1] Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization-Volcani Institute, HaMaccabim Road 68, P.O.B 15159, Rishon LeZion 7528809, Israel;
关键词: Sentinel-2;    spectral bands;    LAI;    vegetation indices;   
DOI  :  10.3390/land10050505
来源: DOAJ
【 摘 要 】

Satellite remote sensing is a useful tool for estimating crop variables, particularly Leaf Area Index (LAI), which plays a pivotal role in monitoring crop development. The goal of this study was to identify the optimal Sentinel-2 bands for LAI estimation and to derive Vegetation Indices (VI) that are well correlated with LAI. Linear regression models between time series of Sentinel-2 imagery and field-measured LAI showed that Sentinel-2 Band-8A—Narrow Near InfraRed (NIR) is more accurate for LAI estimation than the traditionally used Band-8 (NIR). Band-5 (Red edge-1) showed the lowest performance out of all red edge bands in tomato and cotton. A novel finding was that Band 9 (Water vapor) showed a very high correlation with LAI. Bands 1, 2, 3, 4, 5, 11, and 12 were saturated at LAI ≈ 3 in cotton and tomato. Bands 6, 7, 8, 8A, and 9 were not saturated at high LAI values in cotton and tomato. The tomato, cotton, and wheat LAI estimation performance of ReNDVI (R2 = 0.79, 0.98, 0.83, respectively) and two new VIs (WEVI (Water vapor red Edge Vegetation Index) (R2 = 0.81, 0.96, 0.71, respectively) and WNEVI (Water vapor narrow NIR red Edge Vegetation index) (R2 = 0.79, 0.98, 0.79, respectively)) were higher than the LAI estimation performance of the commonly used NDVI (R2 = 0.66, 0.83, 0.05, respectively) and other common VIs tested in this study. Consequently, reNDVI, WEVI, and WNEVI can facilitate more accurate agricultural monitoring than traditional VIs.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次