Journal of Vibroengineering | |
Bearing fault feature extraction method based on complete ensemble empirical mode decomposition with adaptive noise | |
Kai Wen1  Cunyi Zhang1  Guosheng Geng1  Maohua Xiao1  Dan Wu1  Longfei Xiong1  | |
[1] College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China; | |
关键词: CEEMDAN; EEMD; denoising; fault diagnosis; feature extraction; bearings; | |
DOI : 10.21595/jve.2018.19562 | |
来源: DOAJ |
【 摘 要 】
As an important part of rotating machinery, bearings play an important role in large-scale mechanical equipment. Abnormal bearing conditions may cause the machine to malfunction, or even evolve into a serious accident. Therefore, the accurate and timely fault diagnosis of the bearing is of great significance. Based on EMD, this paper introduces the working principles and characteristics of EEMD and CEEMDAN, respectively. Then the signal was decomposed by EEMD and CEEMDAN respectively. The simulation results show that CEEMDAN has better effect on signal decomposition. Then, comparing the effect of CEEMDAN and EEMD on bearing fault feature frequency extraction, the experiment proves that CEEMDAN has a better ability to preserve original signal and eliminate noise than EEMD method, and can extract bearing fault feature more accurately and timely.
【 授权许可】
Unknown