IEEE Access | |
Iteratively Pruned Deep Learning Ensembles for COVID-19 Detection in Chest X-Rays | |
Lucas S. Folio1  Sivaramakrishnan Rajaraman2  Sameer K. Antani2  Les R. Folio3  Philip O. Alderson4  Jenifer Siegelman5  | |
[1] Functional and Applied Biomechanics Section, Clinical Center, National Institutes of Health, Bethesda, MD, USA;Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, USA;Radiological and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA;School of Medicine, Saint Louis University, St. Louis, MO, USA;Takeda Pharmaceuticals, Cambridge, MA, USA; | |
关键词: COVID-19; convolutional neural network; deep learning; ensemble; iterative pruning; | |
DOI : 10.1109/ACCESS.2020.3003810 | |
来源: DOAJ |
【 摘 要 】
We demonstrate use of iteratively pruned deep learning model ensembles for detecting pulmonary manifestations of COVID-19 with chest X-rays. This disease is caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus, also known as the novel Coronavirus (2019-nCoV). A custom convolutional neural network and a selection of ImageNet pretrained models are trained and evaluated at patient-level on publicly available CXR collections to learn modality-specific feature representations. The learned knowledge is transferred and fine-tuned to improve performance and generalization in the related task of classifying CXRs as normal, showing bacterial pneumonia, or COVID-19-viral abnormalities. The best performing models are iteratively pruned to reduce complexity and improve memory efficiency. The predictions of the best-performing pruned models are combined through different ensemble strategies to improve classification performance. Empirical evaluations demonstrate that the weighted average of the best-performing pruned models significantly improves performance resulting in an accuracy of 99.01% and area under the curve of 0.9972 in detecting COVID-19 findings on CXRs. The combined use of modality-specific knowledge transfer, iterative model pruning, and ensemble learning resulted in improved predictions. We expect that this model can be quickly adopted for COVID-19 screening using chest radiographs.
【 授权许可】
Unknown