Applied Sciences | |
Deformation Behavior of Saturated Soft Clay under Cyclic Loading with Principal Stress Rotation | |
Pengfei Wei1  Tingyu Wu1  Yanming Yu2  Zunan Fu2  Guoshuai Wang3  Wenbo Song3  | |
[1] College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310000, China;Huadong Engineering Corporation Limited, Hangzhou 310000, China;Zhejiang Huadong Engineering Construction Management Co., Ltd., Hangzhou 310000, China; | |
关键词: soft clay; traffic loading; principal stress rotation; dynamic hollow cylinder apparatus; backbone curve; | |
DOI : 10.3390/app11198987 | |
来源: DOAJ |
【 摘 要 】
Under long-term traffic loading, the soil elements in subgrade are subjected to continuous principal stress rotation. In order to study the deformation properties of soft clays under traffic loading with principal stress rotation, a series of cyclic torsional shear tests were conducted on Wenzhou soft clays under different torsional cyclic stress ratios and degrees of principal stress rotation. The test results showed the stiffness softening of soil under long-term traffic loading. In addition, the principal stress rotation induced by traffic loading aggravated the deformation of clay samples and pore pressure accumulation. A modified dynamic pore pressure model was applied to consider the effect of principal stress rotation on undrained cumulative pore pressure, predicting the growth of cumulative pore pressure at different cycles. Considering loading cycles and the principal stress rotation, a modified Hardin–Drnevich (H-D) backbone curve model under traffic loading with principal stress rotation was proposed, and the predictive values of this model agreed well with the experimental values. Compared with the traditional H–D model, this model better reflects the cyclic deformation of soft clays under long-term traffic loading with principal stress rotation.
【 授权许可】
Unknown