Frontiers in Marine Science | |
Wadden Sea Eutrophication: Long-Term Trends and Regional Differences | |
Annika Grage1  Jacob Carstensen2  Hermann Lenhart3  Richard Hofmeister4  Onur Kerimoglu4  Justus E. E. van Beusekom4  Johannes Pätsch5  Lena Rönn6  Kerstin Kolbe6  Hans Ruiter7  Tobias Dolch8  Johannes Rick8  | |
[1] Bundesamt für Seeschifffahrt und Hydrographie, Hamburg, Germany;Department of Bioscience, Aarhus University, Roskilde, Denmark;Department of Informatics, University of Hamburg, Hamburg, Germany;Institut für Küstenforschung, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany;Institute of Oceanography, University of Hamburg, Hamburg, Germany;Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz, Betriebsstelle Brake-Oldenburg, Oldenburg, Germany;Rijkswaterstaat, Utrecht, Netherlands;Wadden Sea Station Sylt, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany; | |
关键词: eutrophication indicators; Wadden Sea; North Sea; nutrients; long-term trends; phytoplankton; | |
DOI : 10.3389/fmars.2019.00370 | |
来源: DOAJ |
【 摘 要 】
The Wadden Sea is a shallow intertidal coastal sea, largely protected by barrier islands and fringing the North Sea coasts of Netherlands, Germany, and Denmark. It is subject to influences from both the North Sea and major European rivers. Nutrient enrichment from these rivers since the 1950s has impacted the Wadden Sea ecology including loss of seagrass, increased phytoplankton blooms, and increased green macroalgae blooms. Rivers are the major source of nutrients causing Wadden Sea eutrophication. The nutrient input of the major rivers impacting the Wadden Sea reached a maximum during the 1980s and decreased at an average pace of about 2.5% per year for total Nitrogen (TN) and about 5% per year for total Phosphorus (TP), leading to decreasing nutrient levels but also increasing N/P ratios. During the past decade, the lowest nutrient inputs since 1977 were observed but these declining trends are leveling out for TP. Phytoplankton biomass (measured as chlorophyll a) in the Wadden Sea has decreased since the 1980s and presently reached a comparatively low level. In tidal inlet stations with a long-term monitoring, summer phytoplankton levels correlate with riverine TN and TP loads but stations located closer to the coast behave in a more complex manner. Regional differences are observed, with highest chlorophyll a levels in the southern Wadden Sea and lowest levels in the northern Wadden Sea. Model data support the hypothesis that the higher eutrophication levels in the southern Wadden Sea are linked to a more intense coastward accumulation of organic matter produced in the North Sea.
【 授权许可】
Unknown