期刊论文详细信息
Frontiers in Cell and Developmental Biology
Mitophagy, Mitochondrial Homeostasis, and Cell Fate
Oliver Kepp2  Yushan Zhu3  Kaili Ma4  Guo Chen4  Quan Chen4  Wenhui Li5 
[1] Peking Union Medical College, Beijing, China;Gustave Roussy Cancer Campus, Villejuif, France;INSERM, UMR 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France;State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China;;Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences &
关键词: mitophagy;    mitochondrial dynamics;    mitochondrial apoptosis;    cell fate;    mitophagy receptors;   
DOI  :  10.3389/fcell.2020.00467
来源: DOAJ
【 摘 要 】

Mitochondria are highly plastic and dynamic organelles that have graded responses to the changing cellular, environmental, and developmental cues. Mitochondria undergo constant mitochondrial fission and fusion, mitochondrial biogenesis, and mitophagy, which coordinately control mitochondrial morphology, quantity, quality, turnover, and inheritance. Mitophagy is a cellular process that selectively removes the aged and damaged mitochondria via the specific sequestration and engulfment of mitochondria for subsequent lysosomal degradation. It plays a pivotal role in reinstating cellular homeostasis in normal physiology and conditions of stress. Damaged mitochondria may either instigate innate immunity through the overproduction of ROS or the release of mtDNA, or trigger cell death through the release of cytochrome c and other apoptogenic factors when mitochondria damage is beyond repair. Distinct molecular machineries and signaling pathways are found to regulate these mitochondrial dynamics and behaviors. It is less clear how mitochondrial behaviors are coordinated at molecular levels. BCL2 family proteins interact within family members to regulate mitochondrial outer membrane permeabilization and apoptosis. They were also described as global regulators of mitochondrial homeostasis and mitochondrial fate through their interaction with distinct partners including Drp1, mitofusins, PGAM5, and even LC3 that involved mitochondrial dynamics and behaviors. In this review, we summarize recent findings on molecular pathways governing mitophagy and its coordination with other mitochondrial behaviors, which together determine cellular fate.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次