期刊论文详细信息
Sensors
A Machine Learning Approach for an Improved Inertial Navigation System Solution
Ahmed E. Mahdi1  Ahmed E. Abdalla1  Ahmed Azouz1  Ashraf Abosekeen1 
[1] Electrical Engineering Branch, Military Technical College, Kobry El-Kobba, Cairo 11766, Egypt;
关键词: INS;    MEMS-IMU;    machine learning;    ANFIS;    positioning;    navigation;   
DOI  :  10.3390/s22041687
来源: DOAJ
【 摘 要 】

The inertial navigation system (INS) is a basic component to obtain a continuous navigation solution in various applications. The INS suffers from a growing error over time. In particular, its navigation solution depends mainly on the quality and grade of the inertial measurement unit (IMU), which provides the INS with both accelerations and angular rates. However, low-cost small micro-electro-mechanical systems (MEMSs) suffer from huge error sources such as bias, the scale factor, scale factor instability, and highly non-linear noise. Therefore, MEMS-IMU measurements lead to drifts in the solutions when used as a control input to the INS. Accordingly, several approaches have been introduced to model and mitigate the errors associated with the IMU. In this paper, a machine-learning-based adaptive neuro-fuzzy inference system (ML-based-ANFIS) is proposed to leverage the performance of low-grade IMUs in two phases. The first phase was training 50% of the low-grade IMU measurements with a high-end IMU to generate a suitable error model. The second phase involved testing the developed model on the remaining low-grade IMU measurements. A real road trajectory was used to evaluate the performance of the proposed algorithm. The results showed the effectiveness of utilizing the proposed ML-ANFIS algorithm to remove the errors and improve the INS solution compared to the traditional one. An improvement of 70% in the 2D positioning and of 92% in the 2D velocity of the INS solution were attained when the proposed algorithm was applied compared to the traditional INS solution.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次