期刊论文详细信息
Pathogens
Calendula officinalis Triterpenoid Saponins Impact the Immune Recognition of Proteins in Parasitic Nematodes
Kinga Jóźwicka1  Katarzyna Goździk1  Maria Doligalska1  Ludmiła Szewczak1  Klaudia Brodaczewska1  Anna Szakiel2  Cezary Pączkowski2  Julita Nowakowska3 
[1] Department of Parasitology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
关键词: triterpenoid saponins;    TEM nematode ultrastructure;    protein patterns;   
DOI  :  10.3390/pathogens10030296
来源: DOAJ
【 摘 要 】

The influence of triterpenoid saponins on subcellular morphological changes in the cells of parasitic nematodes remains poorly understood. Our study examines the effect of oleanolic acid glucuronides from marigold (Calendula officinalis) on the possible modification of immunogenic proteins from infective Heligmosomoides polygyrus bakeri larvae (L3). Our findings indicate that the triterpenoid saponins alter the subcellular morphology of the larvae and prevent recognition of nematode-specific proteins by rabbit immune-IgG. TEM ultrastructure and HPLC analysis showed that microtubule and cytoskeleton fibres were fragmented by saponin treatment. MASCOT bioinformatic analysis revealed that in larvae exposed to saponins, the immune epitopes of their proteins altered. Several mitochondrial and cytoskeleton proteins involved in signalling and cellular processes were downregulated or degraded. As possible candidates, the following set of recognised proteins may play a key role in the immunogenicity of larvae: beta-tubulin isotype, alpha-tubulin, myosin, paramyosin isoform-1, actin, disorganized muscle protein-1, ATP-synthase, beta subunit, carboxyl transferase domain protein, glutamate dehydrogenase, enolase (phosphopyruvate hydratase), fructose-bisphosphate aldolase 2, tropomyosin, arginine kinase or putative chaperone protein DnaK, and galactoside-binding lectin. Data are available via ProteomeXchange with identifier PXD024205.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次