IEEE Access | |
Multi-Block Fault Detection for Plant-Wide Dynamic Processes Based on Fault Sensitive Slow Features and Support Vector Data Description | |
Chao Zhai1  Weili Xiong1  Xiaochen Sheng1  | |
[1] Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi, China; | |
关键词: Multi-block strategy; slow feature analysis; fault sensitivity coefficient; support vector data description; fault detection; | |
DOI : 10.1109/ACCESS.2020.3006282 | |
来源: DOAJ |
【 摘 要 】
This study proposes a multi-block fault detection method based on fault-sensitive slow features for large-scale dynamic industrial processes. Firstly, slow feature analysis (SFA) can effectively extract the process dynamic information. However, the slowest changing features may not contain more fault information. Thus, through the analysis of T2 statistic in SFA-based process monitoring model, a fault sensitivity coefficient is defined as a new slow feature sorting criterion to select the most sensitive slow features to fault in each variable direction. Then, considering the unknown characteristics of the fault in the real-time monitoring process, the monitoring model is established for each dimension of variables based on the multi-block strategy. Finally, the support vector data description is used as a fusing method to integrate the statistics calculated in each sub-block to obtain an intuitive detection result. The effectiveness and superiority of the proposed strategy are demonstrated by the experiments on Tennessee Eastman benchmark process and an actual blast furnace ironmaking process.
【 授权许可】
Unknown