期刊论文详细信息
IEEE Access
An Efficient MQ-Signature Scheme Based on Sparse Polynomials
Namhun Koo1  Kyung-Ah Shim2  Cheol-Min Park2 
[1] Applied Algebra and Optimization Research Center, Sungkyunkwan University, Seoul, South Korea;National Institute for Mathematical Sciences, Daejeon, South Korea;
关键词: Equivalent key;    good key;    isomorphism of polynomials problem;    key recovery attack;    multivariate-quadratic problem;    sparse polynomial;   
DOI  :  10.1109/ACCESS.2020.2970608
来源: DOAJ
【 摘 要 】

Multivariate quadratic (MQ) equations-based cryptography is one of the most promising alternatives for currently used public-key cryptographic algorithms in the post-quantum era. It is important to design practical public-key signature schemes on embedded processors and resource-constrained devices for emerging applications in Internet of Things. The MQ-signature schemes are suitable for low-cost constrained devices since they require only modest computational resources. In this paper, we propose an efficient MQ-signature scheme, SOV, using sparse polynomials with a shorter secret key and give its security analysis against known algebraic attacks. Compared to Rainbow, the secret key of SOV has reduced by a factor of 90% without increasing the public key size. In particular, SOV requires signatures of 52 bytes, while ECDSA-256 requires signatures of 64 bytes.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次