Sensors | |
Intrusion Detection System in the Advanced Metering Infrastructure: A Cross-Layer Feature-Fusion CNN-LSTM-Based Approach | |
Ruizhe Yao1  Peng Chen1  Zhihui Liu1  Xianjun Sheng1  Ning Wang1  | |
[1] Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China; | |
关键词: smart grid; advanced metering infrastructure (AMI); intrusion detection system (IDS); convolutional neural networks (CNN); long short-term memory (LSTM); | |
DOI : 10.3390/s21020626 | |
来源: DOAJ |
【 摘 要 】
Among the key components of a smart grid, advanced metering infrastructure (AMI) has become the preferred target for network intrusion due to its bidirectional communication and Internet connection. Intrusion detection systems (IDSs) can monitor abnormal information in the AMI network, so they are an important means by which to solve network intrusion. However, the existing methods exhibit a poor ability to detect intrusions in AMI, because they cannot comprehensively consider the temporal and global characteristics of intrusion information. To solve these problems, an AMI intrusion detection model based on the cross-layer feature fusion of a convolutional neural networks (CNN) and long short-term memory (LSTM) networks is proposed in the present work. The model is composed of CNN and LSTM components connected in the form of a cross-layer; the CNN component recognizes regional features to obtain global features, while the LSTM component obtain periodic features by memory function. The two types of features are aggregated to obtain comprehensive features with multi-domain characteristics, which can more accurately identify intrusion information in AMI. Experiments based on the KDD Cup 99 and NSL-KDD datasets demonstrate that the proposed cross-layer feature-fusion CNN-LSTM model is superior to other existing methods.
【 授权许可】
Unknown