期刊论文详细信息
Remote Sensing
Early Identification of Land Degradation Hotspots in Complex Bio-Geographic Regions
Maria Macchiato1  Mariagrazia D\'Emilio2  Tiziana Simoniello2  Rosa Coluzzi2  Maria Lanfredi2  Rosa Coppola2  Vito Imbrenda2 
[1] Department of Physics, University of Naples Federico II, Monte Sant' Angelo, 80126 Naples, Italy;IMAA-CNR (Institute of Methodologies for Environmental Analysis-Italian National Research Council), C. da Santa Loja, 85050 Tito Scalo (PZ), Italy;
关键词: vegetation degradation;    local climate;    Mediterranean landscape;    bio-geographic complexity;    Landsat;    NDVI;   
DOI  :  10.3390/rs70608154
来源: DOAJ
【 摘 要 】

The development of low-cost and relatively simple tools to identify emerging land degradation across complex regions is fundamental to plan monitoring and intervention strategies. We propose a procedure that integrates multi-spectral satellite observations and air temperature data to detect areas where the current status of local vegetation and climate shows evident departures from the mean conditions of the investigated region. Our procedure was tested in Basilicata (Italy), which is a typical bio-geographic example of vulnerable Mediterranean landscape. We grouped Landsat TM/ETM+ NDVI and air temperature (T) data by vegetation cover type to estimate the statistical distributions of the departures of NDVI and T from the respective land cover class means. The pixels characterized by contextual left tail NDVI values and right tail T values that persisted in time (2002–2006) were classified as critical to land degradation. According to our results, most of the critical areas (88.6%) corresponded to forests affected by erosion and to riparian buffers that are shaped by fragmentation, as confirmed by aerial and in-situ surveys. Our procedure enables cost-effective screenings of complex areas able to identify raising hotspots that require urgent and deeper investigations.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次