Remote Sensing | |
Analysis of the Spatial Differences in Canopy Height Models from UAV LiDAR and Photogrammetry | |
Peng He1  RamP. Sharma2  Peng Luo3  Liyong Fu3  Mengxi Wang3  Qingwang Liu3  Qiao Chen3  Guangshuang Duan3  Mei Li3  Guangxing Wang4  | |
[1] Central South Inventory and Planning Institute, National Forestry and Grassland Administration, Changsha 410014, China;Institute of Forestry, Tribhuwan Univeristy, Kritipur, Kathmandu 44600, Nepal;Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China;School of Earth Systems and Sustainability, Southern Illinois University at Carbondale, Carbondale, IL 62901, USA; | |
关键词: digital surface model; digital terrain model; canopy height model; constrained neighbor interpolation; ordinary neighbor interpolation; point cloud density; | |
DOI : 10.3390/rs12182884 | |
来源: DOAJ |
【 摘 要 】
Forest canopy height is one of the most important spatial characteristics for forest resource inventories and forest ecosystem modeling. Light detection and ranging (LiDAR) can be used to accurately detect canopy surface and terrain information from the backscattering signals of laser pulses, while photogrammetry tends to accurately depict the canopy surface envelope. The spatial differences between the canopy surfaces estimated by LiDAR and photogrammetry have not been investigated in depth. Thus, this study aims to assess LiDAR and photogrammetry point clouds and analyze the spatial differences in canopy heights. The study site is located in the Jigongshan National Nature Reserve of Henan Province, Central China. Six data sets, including one LiDAR data set and five photogrammetry data sets captured from an unmanned aerial vehicle (UAV), were used to estimate the forest canopy heights. Three spatial distribution descriptors, namely, the effective cell ratio (ECR), point cloud homogeneity (PCH) and point cloud redundancy (PCR), were developed to assess the LiDAR and photogrammetry point clouds in the grid. The ordinary neighbor (ON) and constrained neighbor (CN) interpolation algorithms were used to fill void cells in digital surface models (DSMs) and canopy height models (CHMs). The CN algorithm could be used to distinguish small and large holes in the CHMs. The optimal spatial resolution was analyzed according to the ECR changes of DSMs or CHMs resulting from the CN algorithms. Large negative and positive variations were observed between the LiDAR and photogrammetry canopy heights. The stratified mean difference in canopy heights increased gradually from negative to positive when the canopy heights were greater than 3 m, which means that photogrammetry tends to overestimate low canopy heights and underestimate high canopy heights. The CN interpolation algorithm achieved smaller relative root mean square errors than the ON interpolation algorithm. This article provides an operational method for the spatial assessment of point clouds and suggests that the variations between LiDAR and photogrammetry CHMs should be considered when modeling forest parameters.
【 授权许可】
Unknown