期刊论文详细信息
Mathematics
A Generalized Bohr–Jessen Type Theorem for the Epstein Zeta-Function
Antanas Laurinčikas1  Renata Macaitienė2 
[1] Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;Institute of Regional Development, Šiauliai Academy, Vilnius University, Vytauto Str. 84, LT-76352 Šiauliai, Lithuania;
关键词: Epstein zeta-function;    limit theorem;    weak convergence;    Haar measure;   
DOI  :  10.3390/math10122042
来源: DOAJ
【 摘 要 】

Let Q be a positive defined n×n matrix and Q[x̲]=x̲TQx̲. The Epstein zeta-function ζ(s;Q), s=σ+it, is defined, for σ>n2, by the series ζ(s;Q)=x̲Zn\{0̲}(Q[x̲])s, and is meromorphically continued on the whole complex plane. Suppose that n4 is even and φ(t) is a differentiable function with a monotonic derivative. In the paper, it is proved that 1Tmeast[0,T]:ζ(σ+iφ(t);Q)A, AB(C), converges weakly to an explicitly given probability measure on (C,B(C)) as T.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次