期刊论文详细信息
Успехи физики металлов
Modelling of Phase Formation in Solid–Solid and Solid–Liquid Interactions: New Developments
A. M. Gusak and N. V. Storozhuk1 
[1] The Bohdan Khmelnytsky National University of Cherkasy, 81 Shevchenko Blvd., UA-18031 Cherkasy, Ukraine;
关键词: interdiffusion;    intermediate phases;    ordering;    modelling;    mean-field approximation;    noise;    monte carlo method;    soldering;   
DOI  :  10.15407/ufm.22.04.481
来源: DOAJ
【 摘 要 】

Recent developments (after 2016) in modelling of phase formation during solid–solid and solid–liquid reactions by SKMF (Stochastic Kinetic Mean-Field) method, Monte Carlo simulation and phenomenological modelling are reviewed. Reasonable results of multiphase reactive diffusion modelling demonstrating distinct concentration plateau for each intermediate ordered compound and distinct concentration steps between these phases are obtained by the SKMF and Monte Carlo methods, if one takes into account interatomic interactions within two coordination shells and if the signs of mixing energies are ‘minus’ for the first coordination shell and ‘plus’ for the second one. The second possibility for reasonable modelling results is consideration of interatomic interactions depending on local concentration with maxima around the stoichiometric composition. In phenomenological modelling, the generalization of the Wagner diffusivity concept and respective superposition rule are introduced. A new mechanism of the lateral grain growth in the growing phase layers during reactive diffusion is suggested. Anomalously fast grain growth at the final stages of soldering in sandwich-like Cu–Sn–Cu contacts is reported and explained. A simple model of Zn-additions’ influence on the Cu–Sn reaction is described.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次