期刊论文详细信息
ITM Web of Conferences
Research on supply chain planning based on genetic algorithm and long short-term memory
Qiu Yuchen1  Lu Qizong1  Wang Xu1  Li Yujie1 
[1] School of Artificial Intelligence, Guilin University of Electronic Technology;
关键词: data mining;    supply chain planning;    entropy-topsis;    ga;    lstm;   
DOI  :  10.1051/itmconf/20224702015
来源: DOAJ
【 摘 要 】

With the integration of intelligent algorithm into the supply chain process, the fficiency of supply chain planning has been further improved through automatic prediction and decision-making. Although intelligent algorithms are developing, their challenges including real-time nature of supply chain planning and the complexity of scenarios hinder their true potential. In this study, we proposed an improved genetic algorithm (GA)-long short-term memory (LSTM) neural network prediction algorithm to solve various optimization planning problems for the supply chain from suppliers to production enterprises. Specifically, to determine stable suppliers, we first constructed the technique for order preference by similarity to ideal solution (TOPSIS) model to quantitatively evaluate each supplier, and the rationality of the index weight of the TOPSIS algorithm can be enhanced by the entropy method. Finally, the GA and LSTM were used to solve the decision-making and planning problem in raw material supply chain. Our results indicate that the algorithm we proposed can not only efficiently solve the decision planning problem in the raw material supply chain, but it also reasonably analyzes the suppliers quantitatively.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次