Frontiers in Bioengineering and Biotechnology | |
Predicting Drug Release From Degradable Hydrogels Using Fluorescence Correlation Spectroscopy and Mathematical Modeling | |
Saahil Sheth1  Silviya Petrova Zustiak1  Emily Barnard2  Ben Hyatt2  Muruhan Rathinam2  | |
[1] Biomedical Engineering, Saint Louis University, St. Louis, MO, United States;Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD, United States; | |
关键词: hydrogel; degradability; release; drug delivery; diffusion; computation; | |
DOI : 10.3389/fbioe.2019.00410 | |
来源: DOAJ |
【 摘 要 】
Predicting release from degradable hydrogels is challenging but highly valuable in a multitude of applications such as drug delivery and tissue engineering. In this study, we developed a simple mathematical and computational model that accounts for time-varying diffusivity and geometry to predict solute release profiles from degradable hydrogels. Our approach was to use time snapshots of diffusivity and hydrogel geometry data measured experimentally as inputs to a computational model which predicts release profile. We used two model proteins of varying molecular weights: bovine serum albumin (BSA; 66 kDa) and immunoglobulin G (IgG; 150 kDa). We used fluorescence correlation spectroscopy (FCS) to determine protein diffusivity as a function of hydrogel degradation. We tracked changes in gel geometry over the same time period. Curve fits to the diffusivity and geometry data were used as inputs to the computational model to predict the protein release profiles from the degradable hydrogels. We validated the model using conventional bulk release experiments. Because we approached the hydrogel as a black box, the model is particularly valuable for hydrogel systems whose degradation mechanisms are not known or cannot be accurately modeled.
【 授权许可】
Unknown