期刊论文详细信息
Sensors
Plasmonic Sensing Studies of a Gas-Phase Cystic Fibrosis Marker in Moisture Laden Air
KurtD. Benkstein1  Steve Semancik1  DrewA. Hall2  Douglas Conrad3  MonaE. Zaghloul4  Libin Sun4 
[1] Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;Department of Electrical and Computer Engineering, Jacobs School of Engineering, University of California, San Diego, CA 92093, USA;Department of Medicine, University of California, San Diego, CA 92037, USA;School of Engineering and Applied Science, George Washington University, Washington, DC 20052, USA;
关键词: localized surface plasmon resonance;    plasmonic sensing;    image processing;    cystic fibrosis;    acetaldehyde;    humidity;   
DOI  :  10.3390/s21113776
来源: DOAJ
【 摘 要 】

A plasmonic sensing platform was developed as a noninvasive method to monitor gas-phase biomarkers related to cystic fibrosis (CF). The nanohole array (NHA) sensing platform is based on localized surface plasmon resonance (LSPR) and offers a rapid data acquisition capability. Among the numerous gas-phase biomarkers that can be used to assess the lung health of CF patients, acetaldehyde was selected for this investigation. Previous research with diverse types of sensing platforms, with materials ranging from metal oxides to 2-D materials, detected gas-phase acetaldehyde with the lowest detection limit at the µmol/mol (parts-per-million (ppm)) level. In contrast, this work presents a plasmonic sensing platform that can approach the nmol/mol (parts-per-billion (ppb)) level, which covers the required concentration range needed to monitor the status of lung infection and find pulmonary exacerbations. During the experimental measurements made by a spectrometer and by a smartphone, the sensing examination was initially performed in a dry air background and then with high relative humidity (RH) as an interferent, which is relevant to exhaled breath. At a room temperature of 23.1 °C, the lowest detection limit for the investigated plasmonic sensing platform under dry air and 72% RH conditions are 250 nmol/mol (ppb) and 1000 nmol/mol (ppb), respectively.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次