期刊论文详细信息
Electronic Journal of Qualitative Theory of Differential Equations
Local invariant manifolds for delay differential equations with state space in $C^1((-\infty,0],\mathbb{R}^n)$
Hans-Otto Walther1 
[1] University of Giessen, Giessen, Germany;
关键词: delay differential equation;    state-dependent delay;    unbounded delay;    fréchet space;    local invariant manifold;   
DOI  :  10.14232/ejqtde.2016.1.85
来源: DOAJ
【 摘 要 】

Consider the delay differential equation $x'(t)=f(x_t)$ with the history $x_t:(-\infty,0]\to\mathbb{R}^n$ of $x$ at 'time' $t$ defined by $x_t(s)=x(t+s)$. In order not to lose any possible entire solution of any example we work in the Fréchet space $C^1((-\infty,0],\mathbb{R}^n)$, with the topology of uniform convergence of maps and their derivatives on compact sets. A previously obtained result, designed for the application to examples with unbounded state-dependent delay, says that for maps $f$ which are slightly better than continuously differentiable the delay differential equation defines a continuous semiflow on a continuously differentiable submanifold $X\subset C^1$ of codimension $n$, with all time-t-maps continuously differentiable. Here continuously differentiable for maps in Fréchet spaces is understood in the sense of Michal and Bastiani. It implies that $f$ is of locally bounded delay in a certain sense. Using this property - and a related further mild smoothness hypothesis on $f$ - we construct stable, unstable, and center manifolds of the semiflow at stationary points, by means of transversality and embeddings.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次